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Abstract. In the case of elastic high-energy hadron-hadron scattering, the impact of the large-distance
contributions on the behaviour of the slopes of the spin–non-flip and of the spin-flip amplitudes is analysed.
It is shown that the long tail of the hadronic potential in impact parameter space leads to a value of the
slope of the reduced spin-flip amplitude larger than that of the spin–non-flip amplitude. This effect is
taken into account in the calculation of the analysing power in proton-nucleus reactions at high energies.
It is shown that the preliminary measurement of AN for p 12C obtained by the E950 Collaboration indeed
favours a spin-flip amplitude with a large slope. Predictions for AN at pL = 250 GeV/c are given.

PACS. 13.85.Dz Elastic scattering – 13.85.Lg Total cross sections – 13.85.-t Hadron-induced high- and
super-high-energy interactions (energy > 10 GeV)

1 Introduction

Diffractive polarised experiments open a new window on
the spin properties of QCD at large distances. In par-
ticular, the recent data from RHIC and HERA indicate
that, even at high energy, the hadronic amplitude has a
significant spin-flip contribution, Ah

sf , which remains pro-
portional to the spin–non-flip part, Ah

nf , as energy is in-
creased. There were many observations of spin effects at
high energies and at fixed momentum transfers. Several
attempts to extract the spin-flip amplitude from the ex-
perimental data show that the ratio of spin-flip to spin–
non-flip amplitudes can be non-negligible and may be
only slightly dependent on energy [1–3]. Thus, the diffrac-
tive polarised experiments at HERA and RHIC allow one
to study spin properties of quark-pomeron and proton-
pomeron vertices and to search for a possible odderon
contribution. This provides an important test of the spin
properties of QCD at large distances. In all of these cases,
pomeron exchange is expected to contribute to the ob-
served spin effects at some level [4].
In the framework of perturbative QCD, it was shown

that the analysing power of hadron-hadron scattering can
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be non-negligible and proportional to the hadron mass [5].
Hence, one would expect a large analysing power for mod-
erate p2

t , where the spin-flip amplitudes are presumably
relevant for diffractive processes. When large-distance
contributions are considered, one obtains a more compli-
cated spin structure for the pomeron coupling. For exam-
ple, the spin-flip amplitude has been estimated in the QCD
Born approximation by the non-relativistic quark model
for the nucleon wave function [6] in the case where the nu-
cleon contains a dynamically enhanced component with a
compact di-quark. The spin-flip part of the scattering am-
plitude can be determined by the hadron wave function for
the pomeron-hadron couplings or by the gluon-loop cor-
rections for the quark-pomeron coupling [7]. As a result,
the spin asymmetries that appear have a weak energy de-
pendence as s→∞. Additional spin-flip contributions to
the quark-pomeron vertex may also have their origin in
instantons (see, e.g., [8,9]).

The inclusion in the analysis of the experimental data
on spin-correlation parameters does not simplify the task.
In the general case, the form of the analysing power, AN ,
and the position of its maximum, depend on the param-
eters of the elastic-scattering amplitude, i.e. σtot, ρ(s, t),
the Coulomb-nucleon interference phase ϕCN(s, t) and the
elastic slope B(s, t). For the definition of new effects at
small angles, and especially in the region of the diffrac-
tion minimum, one must know the effects of the Coulomb-
hadron interference with sufficiently high accuracy. The
Coulomb-hadron phase was calculated in the entire
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diffraction domain taking into account the form factors of
the nucleons [10]. Some polarisation effects connected with
the Coulomb-hadron interference, including some possible
odderon contribution, were also calculated [11].
The dependence of the hadron spin-flip amplitude on

momentum transfer at small angles is tightly connected
with the basic structure of the hadrons at large distances.
We shall show that the slope of the “reduced” hadron
spin-flip amplitude (the hadron spin-flip amplitude with-

out the kinematic factor
√

|t|) can be larger than the slope
of the hadron spin–non-flip amplitude, as was observed
long ago [12,13]. This leads to small effects in the dif-
ferential hadron cross-section and in the real part of the
hadron spin–non-flip amplitude [14].
The new RHIC fixed-target data, from E950, consist

in measurements of the analysing power

AN (t) =
σ(↑) − σ(↓)

σ(↑) + σ(↓)
(1)

for momentum transfer 0 ≤ |t| ≤ 0.05 GeV2, for a po-
larised p beam hitting a (spin-0) 12C. In this region of t,
the electromagnetic amplitude is of the same order of mag-
nitude as the hadronic amplitude, and the interference of
the imaginary part of Ah

nf with the spin-flip part of the
electromagnetic amplitude Aem

sf leads to a peak in the
analysing power AN , usually referred to as the Coulomb-
Nuclear Interference (CNI) effect [15–17]. This effect was
observed in the data from [18], but the errors were too big
to draw any conclusion on the hadron spin-flip amplitude.
The first RHIC measurements at pL = 22 GeV/c [19]

in p12C scattering indicated, however, that AN may
change sign already at very small momentum transfer.
Such a behaviour cannot be described by the CNI effect
alone. Indeed, fits to the data [20] give for

r5 = lim
t→0

Ãh
sf/Im(Ah

nf) ≡ R+ iI , (2)

R = 0.088± 0.058 , I = −0.161± 0.226 . (3)

2 Ratio of slopes of spin-flip and

spin–non-flip amplitudes

As usual,

Ãsf(s, t) ≡ 2 mp Asf(s, t)/
√

|t|

is the “reduced” spin-flip amplitude, factoring out trivial
kinematic factors. The large error on Im(r5) unfortunately
leads to a high uncertainty on the size of the hadronic
spin-flip amplitude.
For spin-(1/2) scattering, the total helicity amplitudes

can be decomposed in sub-amplitudes describing the ways
the two spins can be changed during the collision:

Φi(s, t) = φh
i (s, t) + φem

i (t) exp[iαemϕCN(s, t)], i = 1, 5,

where φh
i (s, t) represents the pure strong interaction of

hadrons, φem
i (t) represents their electromagnetic interac-

tion, αem = 1/137 is the electromagnetic constant, and

ϕCN(s, t) is the electromagnetic-hadron interference phase
factor. So, to determine the hadron spin-flip amplitude at
small angles, one should take into account all electromag-
netic and all electromagnetic-hadronic interference effects.

In this paper, as we shall be interested in scalar tar-
gets, we define the spin–non-flip amplitudes as Ah

nf(s, t) =
(φh

1(s, t) + φh
3(s, t))/(2s) for the hadronic one, and

Ac
nf(s, t) = (φem

1 (s, t) + φem
3 (s, t))/(2s) for the electro-

magnetic one. Taking into account the Coulomb-nuclear
phase ϕCN, we obtain ImAc

nf ≈ αemϕCN|Ac
nf |. The “re-

duced” spin-flip amplitudes are denoted as Ãh
sf(s, t) =

φh
5(s, t)/(s

√

|t|) and Ãc
sf(s, t) = φem

5 (s, t)/(s
√

|t|).
As usual, we define the slopes Bi of the scattering am-

plitudes as the derivatives of the logarithm of the ampli-
tudes with respect to t. For an exponential form of the
amplitudes, this coincides with the standard slope of the
differential cross-sections divided by 2. If we define the
forms of the separate hadron scattering amplitude as

ImAnf(s, t) ∼ exp(B+
1 t), ReAnf(s, t) ∼ exp(B+

2 t),

ImÃsf(s, t) ∼ exp(B−1 t), ReÃsf(s, t) ∼ exp(B−2 t), (4)

then, at small t (in [0, 0.1] GeV2), almost all phenomeno-
logical analyses assume B+

1 ≈ B+
2 ≈ B−1 ≈ B−2 . To obtain

this, we can take the eikonal representation for the scat-
tering amplitude

φh
1(s, t) = −ip

∫ ∞

0

ρ dρ J0(ρq)[e
χ0(s,ρ) − 1],

φh
5(s, t) = −ip

∫ ∞

0

ρ dρ J1(ρq) χ0(s, ρ) e
χ0(s,ρ), (5)

where p is the momentum in the centre-of-mass frame,
q =

√
−t is the momentum transfer, and χi(s, ρ) are the

eikonal phases in impact parameter (ρ) space coming from
the spin–non-flip (i = 1) and spin-flip interaction (i = 2)
potentials Vi(ρ, z). If the potentials Vi are assumed to have
the same Gaussian form, in the first Born approximation,

φh
1 and φ̂

h
5 will also have the same Gaussian form

φh
1(s, t) ∼

∫ ∞

0

ρdρJ0(ρq)e
−ρ2/2R2

= R2eR
2t/2,

φ̂h
5(s, t) ∼

1

q

∫ ∞

0

ρ2dρJ1(ρq)e
−ρ2/(2R2) = R4eR

2t/2. (6)

In this special case, the slopes of the spin-flip and
“residual”spin–non-flip amplitudes are indeed the same.

However, a Gaussian form of the potential is at best
adequate to represent the central part of the hadronic in-
teraction. This form cuts off the Bessel function and the
contributions at large distances. If we expand the Ji(x) at
small x and truncate the series at order x2, we obtain

J0(x) ' 1−(x/2)2 and 2 J1/x ' (1 −0.5 (x/2)2), (7)
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and the corresponding integrals

φh
1(s, t) ∼

∫ ∞

0

ρdρ

(

1− ρ2 q
2

4

)

e−ρ
2/2R2 ≈ R2e−R

2 q2/2,

φ̂h
5(s, t) ∼

1

q

∫ ∞

0

ρ2dρρ
q

2

(

1− ρ2 q
2

8

)

e−ρ
2/2R2

≈ R4e−R
2q2/2. (8)

still have the same behaviour over q2 [21]. So, the integral
representation for spin-flip and spin–non-flip amplitudes
will be the same as in (6).
If, however, the potential (or the corresponding

eikonal) has a long (exponential or power) tail in impact
parameter, the approximation (7) for the Bessel functions
does not lead to correct results and one has to perform
the full integration.
Let us examine the contribution of large distances. The

Hankel asymptotics of the Bessel functions at large dis-
tances [22] are

Jν(z) =
√

2/πz [P (ν, z) cosχ(ν, z)

−Q(ν, z) sinχ(ν, z)],

P (ν, z) ∼
∞
∑

k=0

(−1)k (ν, 2k)
(2z)2k

,

Q(ν, z) ∼
∞
∑

k=0

(−1)k (ν, 2k + 1)
(2z)2k+1

,

χ(ν, z) = z − (ν/2 + 1/4). (9)

This gives for ν = 0, 1

J0(x) =
√

2/(πx)[P0(x) cos (x− π/4)

−Q0(x) sin (x− π/4)] ,

J1(x) =
√

2/(πx)[P1(x) cos (x− 3π/4)
−Q1(x) sin (x− 3π/4)] , (10)

with

P0(x) ≈ 1− 0.0703125/x2 + 0.1121521/x4 + . . . ,

Q0(x) ≈ −0.125/x+ 0.073242188/x3 + . . . ,

P1(x) ≈ 1 + 0.1171875/x2 − 0.144195557/x4 + . . . ,

Q1(x) ≈ 0.375/x− 0.10253906/x3 + . . . . (11)

From this, we obtain

√
πxJ0(x) ≈

(

1− 0.125
x

− 0.07
x2

)

cosx

+

(

1 +
0.125

x
− 0.07

x2

)

sinx ,

√
πxJ1(x) ≈

(

1 +
0.375

x
+
0.117

x2

)

sinx

−
(

1− 0.375
x

+
0.117

x2

)

cosx . (12)

The leading behaviour at large x will thus be proportional
to 1/

√
qρ.

Let us calculate the corresponding integrals in the case
of large distances

φh
1(s, t) ∼

∫ ∞

1

ρ2/
√
q ρ exp[−ρ2/(2R2)] dρ

= 1/
√

2 q R3/2 γ[3/4; 1/(2R2)] ,

φh
5(s, t)/q ∼ 1/q

∫ ∞

0

ρ2/
√
q ρ exp[−ρ2/(2R2)] dρ

= 1/(q
√
q) 21/4 R5/2 γ[5/4; 1/(2R2)] , (13)

where γ[a; z] is the incomplete Gamma-function. We see
that the exponential asymptotics of both representa-
tions are the same, but the reduced spin-flip amplitude
has an additional q3/2 in the denominator and hence it
has a larger effective slope then the spin–non-flip ampli-
tude. Slightly more complicated calculations, keeping the
O(1/x) in (12), lead to practically the same results:

φh
1(s, t) ∼ 1/q2

∫ ∞

0

√
x

[(

1− 0.125
x

)

cosx

+

(

1 +
0.125

x

)

sinx

]

e−x
2/(2R2q2)dx

≈ R

q
1F1(3/4, 1/2,−q2R2/2),

φh
5(s, t)

q
∼ 1

q4

∫ ∞

0

x3/2

[(

0.375

x
− 1

)

cosx

+

(

1− 0.375
x

)

sinx

]

e−x
2/(2R2q2) dx

≈ R3/2

q5/2
1F1(3/4, 1/2,−q2R2/2) . (14)

Again, the additional q3/2 in the denominator leads to
a larger slope for the residual spin-flip amplitude. So, de-
spite the fact that the integrals have the same exponential
behaviour asymptotically, the additional inverse power of
q leads to a larger effective slope for the residual spin-flip
amplitude, although we take a Gaussian representation in
impact parameter.
These results can be confirmed by a numerical calcula-

tion of the relative contributions of the large distances. We
calculate the scattering amplitude in the Born approxima-
tion in the cases of exponential and Gaussian form factors
in impact parameter representations as a function of the
upper limit b of the corresponding integral

φh
1(t) ∼

∫ b

0

ρ dρ J0(ρ∆)fn,

φh
5(t)/q ∼

∫ b

0

ρ2 dρ J1(ρ∆) fn (15)

with fn = exp [−(ρ/5)n], and n = 1, 2. We then cal-
culate the ratio of the slopes of these two amplitudes
RBB = Bsf/Bnf as a function of b for these two values
of n. The result is shown in fig. 1. We see that at small
impact parameter the value of RBB is practically the same
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Fig. 1. The ratio of the effective slopes RBB for the cases
n = 1 (dashed line) and n = 2 (solid line) as a function of the
upper bound of the integrals b.

in both cases and depends weakly on the value of b. How-
ever, at large distances, the behaviour of RBB is different.
In the case of the Gaussian form factor, the value of RBB

reaches its asymptotic value (= 1) quickly. But in the
case of the exponential behaviour, the value RBB reaches
its limit RBB = 1.7 only at large distances. These calcu-
lations confirm our analytical analysis of the asymptotic
behaviour of these integrals at large distances.
The first observation that the slopes do not coincide

was made in [12]. It was found from the analysis of the
π±p→ π±p and pp→ pp reactions at pL = 20–30 GeV/c
that the slope of the “residual” spin-flip amplitude is
about twice as large as the slope of the spin–non-flip am-
plitude. This conclusion can also be reached from the phe-
nomenological analysis carried out in [13] of spin corre-
lation parameters in elastic proton-proton scattering at
pL = 6 GeV/c.
In [21], it was shown that in the case of an exponential

tail for the potentials χi(b, s) ∼ He−aρ, and using the
standard integral representation

∫ ∞

0

xα−1 exp(−p x)Jν(cx) dx = Iαν ,

with Iν+2
ν = 2p (2c)ν Γ (ν + 3/2)/[

√
π(p2 + c2)3/2], one

obtains

Anf(s, t) ∼
1

a
√

a2 + q2
e−Bq

2

,

Ãsf(s, t) ∼
3 a B2

√

a2 + q2
e−2 Bq2 . (16)

In this case, one can see that the slope of the “residual”
spin-flip amplitude exceeds the slope of the spin–non-flip
amplitudes by a factor of two.
It is interesting to note that the derivative relations

for the helicity amplitudes with t 6= 0 and {λi} =
λc, λd, λa, λb, ∆λ = |λc−λd−λa+λb| for spin-dependent
amplitudes, carefully examined in [23],

Fλi
(s, t) = Cλi

(s)
(√
−t

)∆λ
(

1√
−t

∂

∂
√
−t

)∆λ

F∆λ=0(s, t)

(17)

lead to the same results. In the case of a Gaussian form
for the spin–non-flip amplitude, using (17), we obtain the
same slopes for the spin-flip and spin–non-flip amplitudes.
But if we choose another t-dependence for the spin–non-
flip amplitude, for example that given by the hadronic
form factor Λ2/(Λ2 − t)n, the spin-flip amplitude is then
given by

F1/2,−1/2(s, t) = C1/2,−1/2(s)
√
−t Λ2

(Λ2 − t)n+1
. (18)

In the case n = 1, the slope becomes about twice as large.
The same result was obtained in the impact parameter
representation in [21]. Of course, the derivative relations
at non-asymptotic energy should be used with care, as
was done for the derivative dispersion relations for forward
scattering [24].
Hence, a long-tail hadronic potential implies a signifi-

cant difference in the slopes of the “residual” spin-flip and
of the spin–non-flip amplitudes. Note also that the proce-
dure of eikonalization will lead to a further increase of the
difference between these two slopes.

3 The analysing power in proton-nucleus

scattering

The above results can be used in the description of the
analysing power at small momentum transfer. In the case
of hadron-hadron scattering at large energy, the experi-
mental data are scarce. The most famous experiment on
proton-proton scattering at pL = 200 GeV/c has large
errors, and the analysis of [2] concludes that the hadron
spin-flip amplitude contributes very little. Of course, it
will be very interesting to obtain further measurements
from the RHIC PP2PP Collaboration. At present, we only
have preliminary experimental data on AN in proton-
carbon elastic scattering. Despite the fact that these
data have bad normalisation conditions, the form of the
analysing power is already very interesting.
For p12C scattering, the elastic and total cross-

sections, and the analysing power AN , are given by

dσ/dt = π
(

|Anf |2 + |Asf |2
)

,

σtot = 4π Im(Anf), (19)

AN dσ/dt = −2π Im (AnfA∗sf) .
Each term includes a hadronic and an electromagnetic

contribution: Ai(s, t) = Ah
i (s, t) + Aem

i (t)e
iδ, (i = nf, sf),

where Ah
i (s, t) describes the strong interaction of p with

12C, and Aem
i (t) their electromagnetic interaction. αem

is the electromagnetic fine structure constant, and the
Coulomb-hadron phase δ is given by δ = ZαemϕCN with Z
the charge of the nucleus, and ϕCN the Coulomb-nuclear
phase [10]. The electromagnetic part of the scattering am-
plitude can be written as

Aem
nf =

2αem Z

t
F

12C
em F p

em1, (20)

Aem
sf = −

αem Z

mp

√

|t|
F

12C
em F p

em2,
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where F p
em1 and F

p
em2 are the electromagnetic form factors

of the proton, and F
12C
em that of 12C. We use

F p
em1 =

4m2
p − t(κp + 1)

(4m2
p − t)(1− t/0.71)2

, (21)

F p
em2 =

4m2
pκp

(4m2
p − t)(1− t/0.71)2

, (22)

where mp is the mass of the proton and κp its anomalous

magnetic moment. We obtain F
12C
em from the electromag-

netic density of the nucleus

D(r) = D0

[

1 + α̃
( r

a

)2
]

e−(
r

a )
2

. (23)

α̃ = 1.07 and a = 1.7 fm give the best description of the
data [25] in the small-|t| region, and produce a zero of
F

12C
em at |t| = 0.130 GeV2. We also calculated F

12C
em by

integration of the nuclear form factor given by a sum of
Gaussians [26] and obtained practically the same result
with the zero now at |t| = 0.133 GeV2.
We now need to model the strong-interaction parts

of the amplitude. Isoscalar targets such as 12C simplify
the calculation as they suppress the contribution of the
isovector reggeons ρ and a2, by some power of the atomic
number. Also, as 12C is spin 0, there are only two inde-
pendent helicity amplitudes: proton spin-flip and proton
spin–non-flip. However, nuclear targets lead to large the-
oretical uncertainties because of the difficulties linked to
nuclear structure, and of the lack of high-energy proton-
nucleus scattering experiments (see, for example, [27]).
For the t-dependence, as we shall be concerned with

the small-t region, we shall assume that they are well ap-
proximated by falling exponentials. The slope parameter
B(s, t)/2 is then the derivative of the logarithm of the am-
plitude with respect to t. If one considers only one contri-
bution to the amplitude, this corresponds with the slope
B(s, t) of the differential cross-section.
Specific questions appear when we consider the energy

dependence of the spin–non-flip and spin-flip amplitudes
and their phase, or their ratios ρ of real to imaginary parts.
For the latter, the situation is not settled. Firstly, we

may expect the size of ρpA to be ρpA = ρpp/2, as the
a2 and ρ contributions decrease in the nucleus. Secondly,
experimental data on proton-deuteron [28] however show
practically the same size for ρpD and ρpp, from which we
might conclude1 that |ρpn| ≤ |ρpp|. Thirdly, ref. [32] shows
that |ρpp| > |ρpD| > |ρpHe|, and leads to the conclusion
that the size of ρ depends on the atomic number with

1 The analysis based on partial-wave amplitudes and disper-
sion relations [29] leads qualitatively to the same result. Note
that this analysis works well at low energies, but that it has
some problems at high energies. For example, the values of
ρ(pp̄) from [30] seem to conflict with recent data [31]. This
may be due to the fact that the data on which one must rely
for such a study sometimes contradict each other, mainly be-
cause ρ is not a direct observable, but requires some theoretical
input which varies from one experiment to the other.

ρpA ' ρpp/A. In this case, we obtain for p
12C scattering

at large energies ρ ≈ 0. Finally, the data from [34,37]
indicate that it is very likely that ρpA ≥ 0.
In this paper, we choose an intermediate variant:

ρp12C ≈ ρpp/2, (24)

which corresponds to ρpA = ρppA
−1/3. We emphasise that

we do not know the energy dependence of ρpA, but because
the ρ and a2 trajectories are suppressed in proton-carbon
scattering, and because they contribute negatively, it must
be larger than in the pp case, where it is about −0.1 in
this energy region.
The energy dependence of the asymptotic spin-flip am-

plitude is also far from decided. As mentioned above, it
is possible that, in high-energy hadron-hadron scattering,
the ratio of the spin–non-flip to the spin-flip amplitude
decreases slowly with energy. In this case, if we take only
the asymptotic part of the spin-flip amplitude into ac-
count, we cannot make its real part proportional to ρpp.
In the following, we shall see that imposing proportion-
ality to ρpp leads to a strong energy dependence for the
spin-flip amplitude.
The above considerations lead to the following form

for the hadron spin–non-flip amplitude:

ApAnf (s, t) = (1 + ρpA)
σpAtot(s)

4π
exp

(

B+

2
t

)

. (25)

The slope and ρ-parameter are assumed to be proportional
to their values in pp scattering, which we take as in [37]:

B+
pp(s) = 11.13− 6.21/

√
pL − 0.3 ln pL,

ρpp(s) = 6.8/p0.742
L − 6.6/p0.599

L + 0.124. (26)

The total cross-sections were chosen as

σpAtot = RC/p(s)σ
pp
tot . (27)

The pp total cross-section is obtained from the best form
of [33], which works well in this energy region:

σpptot(s) = 35.9 + 0.316 log
2 s

s0

+42.1

(

s

s1

)−0.468

− 32.2
(

s

s1

)−0.540

, (28)

with all coefficients in mb, s1 = 1 GeV2 and s0 =
34.41 GeV2. The analysis of [35] and the data of [36] show
that the ratio RC/p decreases very slowly in the region
5 ≤ pL ≤ 600 GeV/c. So, we take

RC/p(s) = 9.5 (1− 0.015 ln s) (29)

for the energy region 24 ≤ pL ≤ 250 GeV/c.
The experiment data [37] on pC scattering at pL =

600 GeV/c gives us B+
pC(t ≈ 0.02 GeV2) = 62 GeV−2.

But the experiment data [34] on hadron-nucleus scatter-
ing gives at small t B+

pC(t ≈ 0.01 GeV2) = 70.5 GeV−2 at

pL = 70 GeV/c, and B
+
pC(t ≈ 0.01 GeV2) = 74 GeV−2 at
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(a)

(b)

Fig. 2. (a) The energy dependence of AN (without hadron
spin-flip) at pL = 24, 100, 250 GeV/c (dashed, solid, and
long-dashed lines, correspondingly) compared with the data at
pL = 22 GeV/c (crosses) and pL = 24 GeV/c (boxes) [19,
38] (only statistical errors are shown). (b) The dependence
of AN (without hadron spin-flip) over B+ (solid line: B+ is
normalised to the data of [34]; dash-dots: B+ is normalised to
the data of [37]) compared with the data at pL = 100 GeV/c
(boxes and circles) [38] (only statistical errors are shown).

pL = 175 GeV/c. Hence, we assume that the slope slowly
rises with ln s in a way similar to the pp case, and nor-
malise it so that it reproduces [34] or [37]. These two nor-
malisations give us a slope of similar value B+

pC ' 5.5 Bpp.
We can now parameterize the spin-flip part of p12C

scattering as

Ah
sf(s, t) = (k2 + i k1)

√

|t| σpAtot(s)
4π

exp

(

B−

2
t

)

. (30)

According to the above analysis, we investigate two ex-
treme cases for the slope of the spin-flip amplitude:

– case I: the spin-flip and the spin–non-flip amplitude
have the same slope B−pC = B+

pC;

– case II: B−pC = 2B+
pC.

One could of course allow for more freedom and try to
determine the values of the slope B−, but the data are not
yet precise enough to do this. The coefficients k1 and k2

are chosen to obtain the best description of AN at pL = 24
and 100 GeV/c. Of course, we can only aim at a qualitative
description as the data are only preliminary and as they
are normalised to those at pL = 22 GeV/c [19].

(a)

(b)

Fig. 3. (a) AN with hadron spin-flip amplitude in case I (B− =
B+) for pL = 24 GeV/c (dash-dot) and pL = 100, 250 GeV/c
(dash-dots), compared with the curves of fig. 2(a). (b) AN

with hadron spin-flip amplitude in case II (B− = 2B+) for
pL = 24, 100, 250 GeV/c. (dash-dot, dash-dots, and dots,
correspondingly), compared with the curves of fig. 2(a).

From the full scattering amplitude, the analysing
power is given by

AN
dσ

dt
= −4π[Im(Anf)Re(Asf)− Re(Anf)Im(Asf)], (31)

each term having electromagnetic and hadronic contribu-
tions.
Now, let us first calculate AN without the contribution

of the hadron spin-flip amplitude. In this case, the size and
shape of AN are determined by the interference between
the hadron spin–non-flip amplitude and the magnetic part
of the electromagnetic amplitude. In fig. 2(a), the results
of such calculations are shown for small momentum trans-
fer, at pL = 24, 100, 250 GeV/c, and are compared with
the preliminary data at pL = 22, 24 GeV/c [19,38]. The
energy dependence is weak and is determined mostly by
the energy dependence of ρ, which we have taken propor-
tional to ρpp. In fig. 2(b), the calculations are made at
pL = 100 GeV/c for the different normalisations of the
slope. These lead respectively, at pL = 100 GeV/c, to
the values B+

pC = 58.3 GeV
−2 and B+

pC = 72.1 GeV
−2. It

is clear that this difference only slightly changes the size
of AN at |t| ≥ 0.02 GeV2.
In fig. 3, we show the values of AN calculated for cases I

and II for the slope of the hadron spin-flip amplitude.
We can see that in both cases we obtain a small energy
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(a)

(b)

Fig. 4. AN with a hadron spin-flip amplitude which has an
additional energy factor

√
s1/
√
s. (a) In case I (B− = B+) for

pL = 24, 100, 250 GeV/c. (dashed, solid, and dash-dotted line,
correspondingly). (b) The same in case II (B− = 2B+).

dependence. In case I, AN decreases less with |t| immedi-
ately after the maximum. But at large |t| ≥ 0.01 GeV2

the behaviour of AN is very different: we can obtain
a different sign for AN at |t| ≈ 0.06 GeV2. In case I,
when B−pC = B+

pC, AN changes sign in the region of

|t| ≈ 0.02 GeV2 and then grows in magnitude. In case II,
when B−pC = 2B

+
pC, AN approaches zero and then grows

positive again.

It is interesting to note that in [39], where we investi-
gated the analysing power for the p12C reaction in case I,
but with a more complicated form factor, we again ob-
tained the possibility that the slope of the hadron spin-
flip exceeds the value 60 GeV−2, and we showed that both
slopes at very small momentum transfer were equal to
about 90 GeV−2. Of course, such a large slope for the
spin–non-flip amplitude cannot be obtained in the stan-
dard Glauber approach and would have to come from an-
other mechanism.

The preliminary experimental data show that AN de-
creases very fast after its maximum and is almost zero in
a small region of momentum transfer. This behaviour can
be explained only if one assumes a negative contribution
of the interference between different parts of the hadron
amplitude, which changes slowly with energy. The prelim-
inary data at pL = 100 GeV/c decrease faster than those
at pL = 24 GeV/c, and the zero of AN may move to lower
values of |t|. This change of sign is independent of the
normalisation of the data. It would be very interesting to

(a)

(b)

Fig. 5. (a) AN in case II (B− = 2B+) and with the real part
of the spin-flip amplitude proportional to ρ at pL = 24, 100,
and 250 GeV/c. (dash-dot, dash-dots, and dots, correspond-
ingly). (b) The values of AN corresponding to a change of
±0.04 in k2 in cases I and II (dash-dots and dash-dot are
for case I; the dashed and solid lines are for case II) for
pL = 100 GeV/c.

obtain new data with higher accuracy and at higher ener-
gies in order to distinguish between the two scenarios for
the slopes of the spin-flip amplitude.
Of course, the weak energy dependence comes from our

choice of the energy dependence of the spin-flip amplitude.
If we introduce, e.g., an additional factor

√

s1/s with s1 =
6.83 GeV (so that s1 corresponds to pL = 24 GeV/c),
we obtain a strong energy dependence for AN , which is
shown in figs. 4(a), (b) in both cases, but such an energy
dependence contradicts the existing experimental data. If
we made the coefficient k2 proportional to the ρ(s) of the
spin–non-flip amplitude, we again would obtain a strong
energy dependence which is shown in figs. 5(a), (b). Hence,
we can conclude that already for the present energy of
proton-nucleus scattering, the part of the hadron-nucleus
spin-flip amplitude connected with secondary reggeons is
small and there exists a non-negligible part of the hadron-
nucleus spin-flip amplitude in which the imaginary and
real parts have a weak energy dependence.

4 Conclusion

By accurate measurements of the analysing power in
the Coulomb-hadron interference region, we can find the
structure of the hadron spin-flip amplitude, and obtain
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further information about the behaviour of the hadron
interaction potential at large distances. Contributions be-
yond the usual eikonal formalism are expected in the pe-
ripheral dynamic model [40], which takes into account
hadron-hadron interactions at large distances. The result-
ing “residual” hadron spin-flip amplitude has a different
slope from that of the spin–non-flip amplitude at small
momentum transfer. The model also gives large spin ef-
fects in the diffraction dip region [41]. We should note
that all our consideration are based on the usual assump-
tion that the imaginary part of the high-energy scattering
amplitude has an exponential behaviour. The other pos-
sibility, that the slope changes slowly as t → 0, requires
a more refined discussion that will be the subject of a
subsequent paper.

O.V.S. is a Visiting Fellow of the Fonds National pour la
Recherche Scientifique, Belgium. We thank V. Kanavets and
D. Svirida for their comments and discussions.
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